7 April, 2025
0 Comments
2 categories
The error message you’re seeing:
pgsqlCopyEditValueError: Pandas data cast to numpy dtype of object. Check input data with np.asarray(data).
usually occurs when you pass non-numeric (e.g., strings or mixed types) data to a function that expects numeric input, such as in scikit-learn or statsmodels.
âś… Common Scenario (e.g., with statsmodels or sklearn)
You might encounter this in situations like:
pythonCopyEditimport statsmodels.api as sm
X = df[['col1', 'col2']] # might contain strings or categories
y = df['target']
model = sm.OLS(y, X)
results = model.fit()
If any column in X
is non-numeric (like strings or categories), it throws that ValueError
.
🔍 How to Fix It
âś… Step 1: Check your Data Types
pythonCopyEditprint(df.dtypes)
Look for columns that are object
or category
.
âś… Step 2: Convert Non-Numeric Data
Use pd.get_dummies()
to convert categorical data to numeric:
pythonCopyEditX = pd.get_dummies(df[['col1', 'col2']], drop_first=True)
Or convert manually:
pythonCopyEditdf['col1'] = df['col1'].astype(float)
âś… Step 3: Add Constant (if needed)
If you’re using statsmodels.OLS
, don’t forget to add a constant:
pythonCopyEditX = sm.add_constant(X)
âś… Step 4: Verify Conversion
You can check the NumPy dtype like this:
pythonCopyEditimport numpy as np
print(np.asarray(X).dtype)
It should return a numeric dtype like float64
.
đź§Ş Example Fix
pythonCopyEditimport pandas as pd
import numpy as np
import statsmodels.api as sm
# Sample DataFrame
df = pd.DataFrame({
'col1': ['A', 'B', 'A', 'C'],
'col2': [1, 2, 3, 4],
'target': [10, 20, 30, 40]
})
# Convert categorical to dummy variables
X = pd.get_dummies(df[['col1', 'col2']], drop_first=True)
# Add constant
X = sm.add_constant(X)
y = df['target']
# Fit model
model = sm.OLS(y, X)
results = model.fit()
print(results.summary())
đź§ Final Tip
If you still get the error after conversion, try forcing the dtype:
pythonCopyEditX = X.astype(float)
Category: Numpy Tutorials, Tutorials