If you’re working with numerical data in Python, chances are you’ve heard of NumPy. It’s the foundation of scientific computing in Python, providing powerful tools for working with arrays, matrices, and numerical functions.
This NumPy functions cheat sheet is designed to be your quick reference guide. Whether you’re a beginner or an experienced developer, this post covers the most commonly used NumPy functions, categorized and explained with examples. Bookmark this page and level up your Python game!
🔢 Array Creation Functions
NumPy offers several methods to create arrays quickly:
pythonCopyEditimport numpy as np
np.array()
– Create array from list pythonCopyEdita = np.array([1, 2, 3])
np.zeros()
– Array of all zeros pythonCopyEditnp.zeros((2, 3)) # 2x3 matrix
np.ones()
– Array of all ones pythonCopyEditnp.ones((3, 3))
np.full()
– Array filled with a specific value pythonCopyEditnp.full((2, 2), 5)
np.eye()
– Identity matrix pythonCopyEditnp.eye(3)
np.arange()
– Range of values pythonCopyEditnp.arange(0, 10, 2)
np.linspace()
– Evenly spaced values pythonCopyEditnp.linspace(0, 1, 5)
🧮 Array Math Functions
Use these functions to perform element-wise mathematical operations:
np.add()
,np.subtract()
,np.multiply()
,np.divide()
np.power()
– Raise elements to a powernp.mod()
– Modulus of array elements
Example:
pythonCopyEdita = np.array([1, 2, 3])
b = np.array([4, 5, 6])
np.add(a, b) # Output: [5 7 9]
🧠 Statistical Functions
np.mean()
– Mean of array elementsnp.median()
– Median valuenp.std()
– Standard deviationnp.var()
– Variancenp.min()
/np.max()
– Minimum/Maximum valuesnp.percentile()
– Percentile of elements
Example:
pythonCopyEditarr = np.array([1, 2, 3, 4])
np.mean(arr) # Output: 2.5
🧩 Array Reshaping Functions
These functions help reshape or manipulate the structure of arrays:
np.reshape()
– Change array shapenp.ravel()
– Flatten arraynp.transpose()
– Transpose matrixnp.swapaxes()
– Swap axes in multidimensional arrays
Example:
pythonCopyEditarr = np.array([[1, 2], [3, 4]])
arr.T # Output: [[1 3] [2 4]]
🔄 Sorting and Searching Functions
np.sort()
– Sort elementsnp.argsort()
– Indices of sorted elementsnp.where()
– Conditional filteringnp.argmin()
/np.argmax()
– Index of min/max
Example:
pythonCopyEditarr = np.array([10, 5, 8])
np.where(arr > 6) # Output: (array([0, 2]),)
🎲 Random Functions (NumPy Random)
np.random.rand()
– Random floats in [0, 1)np.random.randint()
– Random integersnp.random.randn()
– Random samples from normal distributionnp.random.choice()
– Random pick from arraynp.random.seed()
– Set random seed for reproducibility
Example:
pythonCopyEditnp.random.seed(0)
np.random.randint(1, 10, size=(2, 3))
📏 Linear Algebra Functions
np.dot()
– Dot productnp.matmul()
– Matrix multiplicationnp.linalg.inv()
– Inverse of matrixnp.linalg.det()
– Determinantnp.linalg.eig()
– Eigenvalues and eigenvectors
Example:
pythonCopyEditA = np.array([[1, 2], [3, 4]])
np.linalg.inv(A)
🧪 Useful Utility Functions
np.unique()
– Unique elementsnp.isnan()
– Check for NaN valuesnp.isinf()
– Check for infinite valuesnp.clip()
– Limit values within range
Example:
pythonCopyEditarr = np.array([1, 10, 100])
np.clip(arr, 0, 50) # Output: [1 10 50]
❓ FAQs About NumPy Functions
Q1: What is the most commonly used function in NumPy?np.array()
is the foundation for working with NumPy arrays.
Q2: Are NumPy operations faster than regular Python lists?
Yes, NumPy is optimized with C under the hood and supports vectorized operations.
Q3: Can NumPy handle missing values?
NumPy itself doesn’t handle missing values well. Use np.isnan()
to identify them or consider using pandas
.
Q4: How do I generate reproducible random numbers in NumPy?
Use np.random.seed(0)
before generating random numbers.
Q5: Is NumPy good for large datasets?
Yes, NumPy is memory-efficient and ideal for large numerical datasets.
🏁 Conclusion
This NumPy functions cheat sheet is your go-to reference when working with arrays, matrices, statistics, and linear algebra in Python. By mastering these core functions, you’ll not only save time but also write cleaner, faster, and more efficient code.
Whether you’re analyzing data, building ML models, or solving scientific problems, NumPy functions make your workflow seamless. Keep this cheat sheet handy and continue exploring the vast world of Python programming!
Looking for a quick reference for NumPy? Check out this NumPy functions cheat sheet with commonly used functions, examples, and tips for efficient coding in Python.