If you’re working with signal processing or deep learning in PyTorch, Fourier Transforms can help analyze frequencies and patterns in data. Fortunately, PyTorch provides a built-in module, torch.fft, that makes it easy to apply 1D, 2D, or N-dimensional FFTs.
In this tutorial, weāll explain how to use torch.fft effectively ā including functions like fft(), ifft(), and rfft() ā along with code examples, performance tips, and error debugging.
š What is torch.fft in PyTorch?
The torch.fft module is part of PyTorchās high-level API for computing Fast Fourier Transforms (FFT) on tensors. It supports:
- 1D, 2D, and N-dimensional FFTs
 - Real and complex number inputs
 - GPU acceleration
 - Inverse FFT operations
 
FFT is essential in many domains, such as:
- Audio and image processing
 - Physics simulations
 - Frequency-domain analysis
 - Spectral deep learning
 
š¢ Code Examples Using torch.fft
š¹ 1. Basic 1D FFT Example
import torch
signal = torch.tensor([1.0, 2.0, 0.0, -1.0])
fft_result = torch.fft.fft(signal)
print("FFT:", fft_result)
This will return a complex tensor containing frequency components.
š¹ 2. Inverse FFT in PyTorch
ifft_result = torch.fft.ifft(fft_result)
print("Inverse FFT:", ifft_result)
The output should closely match the original signal (within numerical precision).
š¹ 3. 2D FFT for Images
image = torch.rand(128, 128)  # simulate grayscale image
fft2d = torch.fft.fft2(image)
ifft2d = torch.fft.ifft2(fft2d)
Useful in image compression, sharpening, and filtering.
š¹ 4. Using Real FFT (rfft) for Performance
pythonCopyEditreal_signal = torch.randn(1024)
rfft = torch.fft.rfft(real_signal)
irfft = torch.fft.irfft(rfft, n=1024)
Real FFT is more efficient and optimized for real-valued signals.
š  Common Functions in torch.fft
| Function | Description | 
|---|---|
torch.fft.fft() | 1D Fast Fourier Transform | 
torch.fft.ifft() | Inverse 1D FFT | 
torch.fft.fft2() | 2D FFT (useful for images) | 
torch.fft.ifft2() | Inverse 2D FFT | 
torch.fft.fftn() | N-dimensional FFT | 
torch.fft.rfft() | Real FFT (faster, optimized) | 
torch.fft.irfft() | Inverse Real FFT | 
torch.fft.fftshift() | Centers zero frequency | 
torch.fft.ifftshift() | Reverts fftshift | 
š Working with Complex Tensors
PyTorch supports complex tensors:
z = torch.tensor([1 + 2j, 3 - 4j], dtype=torch.cfloat)
print(z.real)  # real part
print(z.imag)  # imaginary part
Ensure correct types like torch.cfloat when using fft() or ifft().
ā Common Errors & Fixes in torch.fft
š« Error 1: FFT requires complex dtype
ā
 Fix: Use dtype=torch.cfloat
x = torch.tensor([1.0, 2.0], dtype=torch.cfloat)
š« Error 2: rfft requires input to be real
ā
 Fix: Use torch.float for real-valued inputs.
š« Error 3: Shape mismatch in inverse transforms
ā
 Fix: Always specify original size in irfft:
torch.fft.irfft(rfft, n=1024)
š People Also Ask (FAQ)
ā What is torch.fft used for?
It performs fast Fourier transforms on PyTorch tensors for tasks like frequency analysis, signal filtering, and image processing.
ā Difference between fft() and rfft() in PyTorch?
fft(): Works with complex input, returns full frequency spectrum.rfft(): Optimized for real input, returns only positive frequencies.
ā Can FFT be used in deep learning?
Yes! It’s used in convolutional layers, spectral transforms, or for efficient data processing.
ā How to visualize FFT output in PyTorch?
Use torch.abs() to get magnitude and plot using matplotlib:
pythonCopyEditimport matplotlib.pyplot as plt
plt.plot(torch.abs(fft_result))
š Final Thoughts
The torch.fft module is a powerful and efficient tool for frequency-based computations in PyTorch. Whether youāre working on audio, images, or scientific data, mastering FFT will enhance your model’s performance and versatility.
ā Key Benefits:
- GPU-accelerated FFTs
 - Works with 1D/2D/N-D tensors
 - Supports real/complex transforms
 - Ideal for deep learning workflows